일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- 코딩테스트
- 비제차 상미분 방정식
- Python
- 스피치 연습
- SW역량테스트
- Problem set 2.7
- English
- 공업수학
- 공학수학
- Conversation
- 백준
- speech
- 문제풀이
- Advanced Engineering Mathematics
- Ode
- Problem Set 1.4
- 공수
- ODEs
- homogeneous
- kreyszig
- vocabulary
- 영어회화
- 미방
- Homogeneous ODEs
- 미분방정식
- 삼성SW역량테스트
- Nonhomogeneous ODEs
- 공수1
- 공수 문제풀이
- Problem set 1.5
- Today
- Total
한걸음
Advanced Engineering Math. Problem set 1.4 : 1 ~ 3 본문
Advanced Engineering Math. Problem set 1.4 : 1 ~ 3
우당탕탕 할 수 있다!!! 2023. 10. 27. 17:21
뒤늦게 정리하는 Problem set 1.4 : 1 ~ 3
종이에 스캔하지 말고 이번엔 수식을 직접 적어서 포스팅한다.
Test for exactness, If not, use an integrating factors.
Problem 1.
Find Solution : $ 2xy dx + x^2 dy = 0 $
Assume that :
$$ M = 2xy , N = x^2 $$
By the assumption of continuity the two second partial derivatives are equals.
$$ \frac {\partial M}{\partial y} = 2 x $$
$$ \frac {\partial N}{\partial x} = 2 x $$
Because of M = N, The equation is exact.
Let, $ u = \int{N dy} + l(x) $
$$ u = \int{2x dy} + l(x) $$
$$ u = 2xy + l(x) $$
Differentiate with respect to x :
$$ \frac {du}{dx} = 2 y + l'(x) = 2xy $$
$$ l'(x) = 2xy - 2y $$
$$ l(x) = x^2 y - 2 x y + c $$
$$ \therefore u(x, y) = 2 x y + x^2 y - 2 x y + c = 0 $$
$$ \therefore x^2 y = c $$
Problem 2.
$ x^3 dx + y^3 dy = 0 $
Let, $ M = x^3, N = y^3 $
The equation is extact ($ \because \frac {\partial M}{\partial y} = 0, \frac {\partial N} {\partial x} = 0 $)
Integrate,
$$ u = \int{M dx} + k(y) $$
$$ u = \frac{1}{4} x ^ 4 + k(y) $$
Differentiate with respect to y :
$$ \frac {\partial u} {\partial y} = k'(y) = N = y^3 $$
$$ \therefore k(y) = \frac {1}{4} y^4 $$
$$ \therefore \frac {1}{4} x^4 + \frac {1}{4} y^4 = c $$
Problem 3.
$ sin x cos y dx + cos x sin y dy = 0 $
The equation is extact ($ \because \frac {\partial M}{\partial y} = - sin x sin y , \frac {\partial N} {\partial x} = - sin x sin y $)
Integrate,
$$ u = \int{M dx} + k(y) $$
$$ u = \int sinx cos y dx + k(y) $$
$$ u = - cos x cos y + k(y) $$
Differentiate with respect to y :
$$ \frac {\partial u} {\partial y} = cos x sin y + k'(y) = cos x sin y $$
$$ \therefore k(y) = c $$
$$ \therefore cos x cos y = c $$
'Engineering > Archive' 카테고리의 다른 글
Advanced Engineering Math. Problem set 1.5 : 5 ~ 7 (0) | 2023.10.31 |
---|---|
Advanced Engineering Math. Problem set 1.5 : 2 ~ 4 (1) | 2023.10.30 |
Advanced Engineering Math. Problem set 1.4 : 13 ~ 15 (1) | 2023.10.24 |
Advanced Engineering Math. Problem set 1.4 : 10 ~ 12 (0) | 2023.10.23 |
Advanced Engineering Math. Problem set 1.4 : 7 ~ 9 (0) | 2023.10.18 |