일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- Nonhomogeneous ODEs
- 백준
- 미방
- Problem Set 1.4
- 문제풀이
- Advanced Engineering Mathematics
- 공수
- speech
- kreyszig
- 코딩테스트
- Conversation
- 삼성SW역량테스트
- SW역량테스트
- English
- 공수 문제풀이
- 공수1
- Python
- 미분방정식
- vocabulary
- 공학수학
- homogeneous
- Problem set 1.5
- 공업수학
- 비제차 상미분 방정식
- 영어회화
- 스피치 연습
- Homogeneous ODEs
- Problem set 2.7
- ODEs
- Ode
- Today
- Total
목록미분방정식 (8)
한걸음
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/ssSVZ/btsBKgywh57/IlyorToCknbtK371IYpN7k/img.png)
타자 치는데 시간이 많이 소요된다. 이미지로 업로드 Problem 13 Problem 14 Problem 15
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/b9nwrl/btsBFqnR9Mv/LAikWONpqjQyevPrKG8HsK/img.png)
문제 풀다 보니, 너무 지저분해서 캡처해서 업로드... Problem 10 Problem 11 Problem 12
Problem 7 ~ 9는 미분 연산자로 표현이 되어있다. 평소대로 읽어서 풀면 된다. 이런 표현은 자주 나오는데, 특히 공기역학 공부시 실체적 도함수(Substantial Derivatives)는 유용하니 익숙해지면 편하다. Problem 7. Find the solution $$ y'' + 2 y' + \frac {3}{4} y = 3 e^{x} + \frac {9}{2} x $$ 1) Solution of homogeneous ODE Let's solve the equation when right hand side is 0 By the characteristic equation, there are real roots, $ \lambda = - \frac {1}{2} or - \frac {3}{2} ..
Problem 4 ~ 6의 경우 Homogeneous Soltn. 구하는 연습이 가능하고, Nonhomogeneous Soltn. 구할 때 Modification rule 또한 적용해 볼 수 있는 문제이다. 그동안 공부한 것들을 충분히 복습하여 내 것으로 만들자. Problem 4. Find the solution $$ y'' - 9 y = 18 cos \pi x $$ 1) Solution of homogeneous ODE Let's solve the equation : $ y'' - 9 y = 0 $ By the characteristic equation, there are two real roots, $ \lambda = 3 \ or \ -3 $ Hence, the solution of homogen..
Problem 1 ~ 3 의 경우에는 전부 Basic Rule 을 이용하는 단순한 문제다. Problem 1. Find the solution. $$ y'' + 5 y ' + 4 y = 10 e^{-3x} $$ 1) Solution of homogeneous ODEs. Let's solve : $ y'' + 5 y ' + 4 y = 0 $ Substitute $ y = e^{\lambda x} $ into homogeneous ODEs, $$ ( \lambda^{2} + 5 \lambda + 4 ) e^{\lambda} = 0 $$ By the characteristic equation, D > 0 , The ODE has 2 real roots. $$ \therefore y_{h} = c_{1} e^{..
드디어 1.5절! 정리시작해봅시다. Intro. 아래와 같은 형태를 가질 때 First-order ODE는 선형(Linear)이라고 한다. $$ {y}' + p(x)y = r(x) $$ y의 차수가 1차 이기 때문에 해당 식을 선형이라고 부른다. y의 차수가 2차 이상이 되는 경우 비선형(NonLinear)이라고 한다. 이번 절에서는 Linear문제의 해를 구하는 것과, Nonlinear를 Linear로 바꾸어 해를 구하는 것을 공부한다. 1. Linear ODE 1.1 Homogeneous Linear ODE r(x)가 0 인 경우 선형미분방정식은 Homogeneous Linear ODE라고 한다. $$ {y}' + p(x)y = 0 $$ 변수분리법(Sperating Variables)을 활용하여 적분..
하루에 3문제 푸는 것은 크게 부담이 가지 않아서 좋다. 느리더라도, 정확하게 알고 넘어가자. 더 이상은 모래 위에 성을 쌓지 않을 것이다. Review 이제 외워지는 것 같다. 안보고도 바로바로 식이 써진다. Nonhomogeneous 1st order ODE 의 식 형태는 다음과 같다. $$ y' + p(x)y = r(x) $$ 적분인자를 구하고, 전개하면 다음과 같은 식이 나온다. 이 때, $ h = \int {p(x) dx} $ 이다. $$ y(x) = e^{-h}(\int{e^{h} r(x) dx} + C) $$ Problem 11. $$ y' = (y - 2) cotx \ , \ cotx = \frac{1}{tanx} $$ $$ y' - y cotx = - 2 cotx $$ 한편, $ h = ..
하루에 세 문제씩 풀고 있다. 이제는 적분인자 구하는 과정 및 최종 결과식이 자연스레 외워진다. Review : For Nonhomogeneous ODE, for instance, $ y' + p(x) y = r(x) $ $$ y(x) = e^{-h} (\int{e^h r(x) dx} + C) \ , \ h = \int{p(x) dx} $$ Problem 8. $$ y' + y tanx = e^{-0.01x} cos x $$ $$ p(x) \equiv tanx \ , \ r(x) \equiv e^{-0.01x} cos x $$ $ h = \int {tanx dx} = ln(secx) $ 이므로, $$ y = e^{-ln(secx)} ( \int {e^{ln(secx) e ^{-0.01x} cos x dx..