반응형
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- Homogeneous ODEs
- 영어회화
- 미분방정식
- Advanced Engineering Mathematics
- 코딩테스트
- Problem set 1.5
- 공수1
- 미방
- Problem set 2.7
- 공수 문제풀이
- Ode
- 백준
- Nonhomogeneous ODEs
- kreyszig
- 공학수학
- Conversation
- 삼성SW역량테스트
- 비제차 상미분 방정식
- Python
- 스피치 연습
- 공수
- homogeneous
- speech
- Problem Set 1.4
- 문제풀이
- 공업수학
- SW역량테스트
- ODEs
- vocabulary
- English
Archives
- Today
- Total
한걸음
Advanced Engineering Math. Problem set 2.7 : 1 ~ 3 본문
Engineering/Archive
Advanced Engineering Math. Problem set 2.7 : 1 ~ 3
우당탕탕 할 수 있다!!! 2023. 11. 28. 14:44반응형
Problem 1 ~ 3 의 경우에는 전부 Basic Rule 을 이용하는 단순한 문제다.
Problem 1.
Find the solution.
1) Solution of homogeneous ODEs.
Let's solve :
Substitute
By the characteristic equation, D > 0 , The ODE has 2 real roots.
2) Solution of Nonhomogeneous ODEs
To find
Let's assume :
Substitute
Problem 2.
Find the solution
1) Solution of homogeneous ODE
Let's solve :
By the characteristic equation , D > 0 , The ODE has two real roots.
2) Solution of Nonhomogeneous ODE
Let's apply Basic Rule of method of undetermined coefficients.
Let's assume :
And Substitute
Problem 3.
Find the solution
1) Solution of homogeneous ODE
제차방정식 푸는 문제는 쉽다. 눈으로 봐도 두개의 실근을 갖는 것을 알 수 있다. 따라서,
2) Solution of Nonhomogeneous ODE
Let's apply Basic Rule of method of undetermined coefficients.
Let's consider the
반응형
'Engineering > Archive' 카테고리의 다른 글
Advanced Engineering Math. Problem set 2.7 : 7 ~ 9 (0) | 2023.11.30 |
---|---|
Advanced Engineering Math. Problem set 2.7 : 4 ~ 6 (0) | 2023.11.29 |
Advanced Engineering Math. Problem set 1.5 : 11 ~ 13 (1) | 2023.11.02 |
Advanced Engineering Math. Problem set 1.5 : 8 ~ 10 (1) | 2023.11.01 |
Advanced Engineering Math. Problem set 1.5 : 5 ~ 7 (0) | 2023.10.31 |