일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- 문제풀이
- Homogeneous ODEs
- kreyszig
- Conversation
- ODEs
- 삼성SW역량테스트
- 코딩테스트
- Ode
- Problem Set 1.4
- 미분방정식
- Advanced Engineering Mathematics
- 스피치 연습
- 공수 문제풀이
- 공업수학
- 공수
- English
- 영어회화
- 공학수학
- Problem set 2.7
- 공수1
- Python
- homogeneous
- vocabulary
- SW역량테스트
- Problem set 1.5
- Nonhomogeneous ODEs
- 미방
- 백준
- speech
- 비제차 상미분 방정식
- Today
- Total
한걸음
Advanced Engineering Math. Problem set 2.7 : 4 ~ 6 본문
Advanced Engineering Math. Problem set 2.7 : 4 ~ 6
우당탕탕 할 수 있다!!! 2023. 11. 29. 18:58
Problem 4 ~ 6의 경우 Homogeneous Soltn. 구하는 연습이 가능하고, Nonhomogeneous Soltn. 구할 때 Modification rule 또한 적용해 볼 수 있는 문제이다. 그동안 공부한 것들을 충분히 복습하여 내 것으로 만들자.
Problem 4.
Find the solution
1) Solution of homogeneous ODE
Let's solve the equation :
By the characteristic equation, there are two real roots,
Hence, the solution of homogeneous ODE
2) Solution of Nonhomogeneous ODE
Let's consider that
Substitute into original equation, and we will get
Problem 5.
Find the solution
1) Solution of homogeneous ODE
Let's solve the equation :
By the characteristic equation, there is double roots,
The first solution of homogeneous of ODE is
It is need to be found 2nd solution of homogen. ODE,
※ 하나의 기저를 알고 있기 때문에 계수감소법(Reduction of order)를 이용하여 나머지 해를 구할 수 있다.
※ 복습겸 전개를 해보자.
Let's assume the solution that :
In short,
because
Integrate,
Hence,
2) Solution of Nonhomogeneous ODE
Let's apply Basic Rule of method of undetermined coefficients.
Assume that :
※ 전개할 때 조심하자... 미리미리 정리하고 전개해야 안 헷갈린다..
Hence, the equation will be :
The parameter K, M will be :
Therefore,
Finally, we can get the solution :
Problem 6.
Find the solution
1) Solution of homogeneous ODE
2) Solution of Nonhomogeneous ODE
So, we need to apply the modification rule, Let's multiply
아래는.. 생략... 작성하는데 시간이 너무 오래 걸린다.
'Engineering > Archive' 카테고리의 다른 글
Advanced Engineering Math. Problem set 2.7 : 10 ~ 12 (1) | 2023.12.08 |
---|---|
Advanced Engineering Math. Problem set 2.7 : 7 ~ 9 (0) | 2023.11.30 |
Advanced Engineering Math. Problem set 2.7 : 1 ~ 3 (2) | 2023.11.28 |
Advanced Engineering Math. Problem set 1.5 : 11 ~ 13 (1) | 2023.11.02 |
Advanced Engineering Math. Problem set 1.5 : 8 ~ 10 (1) | 2023.11.01 |