일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- ODEs
- Advanced Engineering Mathematics
- 공업수학
- Nonhomogeneous ODEs
- 삼성SW역량테스트
- Ode
- 백준
- 미방
- Homogeneous ODEs
- 공학수학
- Problem set 2.7
- 맛집
- kreyszig
- 공수1
- Python
- 영어회화
- 코딩테스트
- 비제차 상미분 방정식
- 공수
- Conversation
- Problem set 1.5
- SW역량테스트
- 미분방정식
- vocabulary
- 대학
- 공수 문제풀이
- homogeneous
- 문제풀이
- English
- Problem Set 1.4
- Today
- Total
한걸음
Advanced Engineering Math. Problem set 2.7 : 4 ~ 6 본문
Advanced Engineering Math. Problem set 2.7 : 4 ~ 6
우당탕탕 할 수 있다!!! 2023. 11. 29. 18:58
Problem 4 ~ 6의 경우 Homogeneous Soltn. 구하는 연습이 가능하고, Nonhomogeneous Soltn. 구할 때 Modification rule 또한 적용해 볼 수 있는 문제이다. 그동안 공부한 것들을 충분히 복습하여 내 것으로 만들자.
Problem 4.
Find the solution
$$ y'' - 9 y = 18 cos \pi x $$
1) Solution of homogeneous ODE
Let's solve the equation : $ y'' - 9 y = 0 $
By the characteristic equation, there are two real roots, $ \lambda = 3 \ or \ -3 $
Hence, the solution of homogeneous ODE
$$ \therefore y_{h} = c_{1} e^{-3x} + c_{2} e^{3x} $$
2) Solution of Nonhomogeneous ODE
Let's consider that $ y_{p} = K cos \pi x + M sin \pi x $ by basic rule of the method of undetermined coef..
$$ y_{p} = K cos \pi x + M sin \pi x $$
$$ y'_{p} = - \pi K sin \pi x + \pi M cos \pi x $$
$$ y''_{p} = - \pi ^{2} K cos \pi x - \pi ^{2} M sin \pi x $$
Substitute into original equation, and we will get $ M = 0 $ and $ K = - \frac{18}{9 + \pi ^{2}}
$$ \therefore c_{1} e^{-3x} + c_{2} e^{3x} - \frac{18}{9 + \pi ^{2}} cos \pi x $$
Problem 5.
Find the solution
$$ y'' + 4y' + 4y = e^{-x} cos x $$
1) Solution of homogeneous ODE
Let's solve the equation : $ y'' + 4y' + 4y = 0 $
By the characteristic equation, there is double roots, $ \lambda = -2 $
The first solution of homogeneous of ODE is $ y_{1} = c_{1} e^{-2x} $
It is need to be found 2nd solution of homogen. ODE,
※ 하나의 기저를 알고 있기 때문에 계수감소법(Reduction of order)를 이용하여 나머지 해를 구할 수 있다.
※ 복습겸 전개를 해보자.
Let's assume the solution that : $ y_{2} = u y_{1} $
$$ y_{2} = u y_{1} $$
$$ y'_{2} = u' y_{1} + u y'_{1} $$
$$ y''_{2} = u'' y_{1} + 2 u' y'_{1} + u y''_{1} $$
$$ u''y_{1} + 2 u'y'_{1} + uy''_{1} + 4 u'y_{1} + 4 uy_{1} + 4 u y_{1} = 0 $$
In short,
$$ u'' y_{1} + 2 u' y'_{1} + 4 u'y_{1} = 0 $$
because $ u(y''_{1} + 4 y'_{1} + 4 y_{1}) = 0 $
Integrate,
$$ y_{2} = x e^{-2x} $$
Hence,
$$ y_{h} = c_{1} e^{-2x} + c_{2} x e^{-2x} $$
2) Solution of Nonhomogeneous ODE
Let's apply Basic Rule of method of undetermined coefficients.
Assume that :
$$ y_{p} = e^{-x} ( K cos x + M sin x) $$
$$ y'_{p} = - K e^{-x} ( cos x + sin x ) + M e^{-x} ( cos x - sinx ) $$
$$ y''_{p} = 2K e^{-x} sinx - 2 Me^{-x} cos x $$
※ 전개할 때 조심하자... 미리미리 정리하고 전개해야 안 헷갈린다..
Hence, the equation will be :
$$ 2 K e^{-x} sin x - 2 M e ^{-x} cos x + 4 ( -Ke^{-x}(cosx + sinx) + M e^{-x}(cosx - sinx)) + 4 e^{-x}(Kcosx + Msinx) = e^{-x} cos x $$
The parameter K, M will be :
$$ K = 0 , M = \frac{1}{2} $$
Therefore,
$$ y_{p} = e^{-x} (\frac{1}{2} sin x ) $$
Finally, we can get the solution :
$$ \therefore y(x) = c_{1} e^{-2x} + c_{2} x e^{-2x} + \frac {1}{2} e^{-x} sin x $$
Problem 6.
Find the solution
$$ y'' + y' + (\pi^{2} + 1/4) y = e^{-x/2} sin \pi x $$
1) Solution of homogeneous ODE
$ \lambda = - \frac{1}{2} \pm \pi i $
$$ \therefore y_{h} = e^{-x/2} (A cos \pi x + B sin \pi x) $$
2) Solution of Nonhomogeneous ODE
$ y_{p} $ is expected to be $ e^{ax} ( K cos \pi x + M sin \pi x ) $, but is is already exist when checking $ y_{h} $
So, we need to apply the modification rule, Let's multiply $ x $ and solve it.
아래는.. 생략... 작성하는데 시간이 너무 오래 걸린다.
'Engineering > Archive' 카테고리의 다른 글
Advanced Engineering Math. Problem set 2.7 : 10 ~ 12 (1) | 2023.12.08 |
---|---|
Advanced Engineering Math. Problem set 2.7 : 7 ~ 9 (0) | 2023.11.30 |
Advanced Engineering Math. Problem set 2.7 : 1 ~ 3 (2) | 2023.11.28 |
Advanced Engineering Math. Problem set 1.5 : 11 ~ 13 (1) | 2023.11.02 |
Advanced Engineering Math. Problem set 1.5 : 8 ~ 10 (1) | 2023.11.01 |