한걸음

Advanced Engineering Math. Problem set 2.7 : 4 ~ 6 본문

Engineering/Archive

Advanced Engineering Math. Problem set 2.7 : 4 ~ 6

우당탕탕 할 수 있다!!! 2023. 11. 29. 18:58
반응형

Problem 4 ~ 6의 경우 Homogeneous Soltn. 구하는 연습이 가능하고, Nonhomogeneous Soltn. 구할 때 Modification rule 또한 적용해 볼 수 있는 문제이다. 그동안 공부한 것들을 충분히 복습하여 내 것으로 만들자.

 

Problem 4.

Find the solution

y9y=18cosπx

1) Solution of homogeneous ODE

 Let's solve the equation : y9y=0

 By the characteristic equation, there are two real roots, λ=3 or 3

 Hence, the solution of homogeneous ODE

yh=c1e3x+c2e3x

2) Solution of Nonhomogeneous ODE

 Let's consider that yp=Kcosπx+Msinπx by basic rule of the method of undetermined coef..

yp=Kcosπx+Msinπx

yp=πKsinπx+πMcosπx

yp=π2Kcosπxπ2Msinπx

 Substitute into original equation, and we will get M=0 and $ K = - \frac{18}{9 + \pi ^{2}}

c1e3x+c2e3x189+π2cosπx

 

Problem 5.

Find the solution

y+4y+4y=excosx

1) Solution of homogeneous ODE

Let's solve the equation : y+4y+4y=0

By the characteristic equation, there is double roots, λ=2

The first solution of homogeneous of ODE is y1=c1e2x

It is need to be found 2nd solution of homogen. ODE,

 ※ 하나의 기저를 알고 있기 때문에 계수감소법(Reduction of order)를 이용하여 나머지 해를 구할 수 있다.

 ※ 복습겸 전개를 해보자.

Let's assume the solution that : y2=uy1

y2=uy1

y2=uy1+uy1

y2=uy1+2uy1+uy1

uy1+2uy1+uy1+4uy1+4uy1+4uy1=0

In short,

uy1+2uy1+4uy1=0

because u(y1+4y1+4y1)=0

Integrate, 

y2=xe2x

Hence,

yh=c1e2x+c2xe2x

2) Solution of Nonhomogeneous ODE

Let's apply Basic Rule of method of undetermined coefficients.

Assume that :

yp=ex(Kcosx+Msinx)

yp=Kex(cosx+sinx)+Mex(cosxsinx)

yp=2Kexsinx2Mexcosx

※ 전개할 때 조심하자... 미리미리 정리하고 전개해야 안 헷갈린다.. 

Hence, the equation will be :

2Kexsinx2Mexcosx+4(Kex(cosx+sinx)+Mex(cosxsinx))+4ex(Kcosx+Msinx)=excosx

The parameter K, M will be :

K=0,M=12

Therefore,

yp=ex(12sinx)

Finally, we can get the solution : 

y(x)=c1e2x+c2xe2x+12exsinx

 

Problem 6.

Find the solution

y+y+(π2+1/4)y=ex/2sinπx

1) Solution of homogeneous ODE

λ=12±πi

yh=ex/2(Acosπx+Bsinπx)

2) Solution of Nonhomogeneous ODE

yp is expected to be eax(Kcosπx+Msinπx), but is is already exist when checking yh

So, we need to apply the modification rule, Let's multiply x and solve it.

아래는.. 생략... 작성하는데 시간이 너무 오래 걸린다.

반응형