한걸음

Advanced Engineering Math. Problem set 1.4 : 1 ~ 3 본문

Engineering/Archive

Advanced Engineering Math. Problem set 1.4 : 1 ~ 3

우당탕탕 할 수 있다!!! 2023. 10. 27. 17:21
반응형

 뒤늦게 정리하는 Problem set 1.4 : 1 ~ 3

종이에 스캔하지 말고 이번엔 수식을 직접 적어서 포스팅한다.

 

Test for exactness, If not, use an integrating factors.

 

Problem 1.

Find Solution : 2xydx+x2dy=0

 

Assume that : 

M=2xy,N=x2

 

By the assumption of continuity the two second partial derivatives are equals.

 

My=2x

Nx=2x

 

Because of M = N, The equation is exact.

 

Let, u=Ndy+l(x)

 

u=2xdy+l(x)

u=2xy+l(x)

 

Differentiate with respect to x : 

 

dudx=2y+l(x)=2xy

l(x)=2xy2y

l(x)=x2y2xy+c

x2y=c

 

Problem 2.

x3dx+y3dy=0

Let, M=x3,N=y3

The equation is extact (My=0,Nx=0)

Integrate, 

 

u=Mdx+k(y)

u=14x4+k(y)

 

Differentiate with respect to y : 

 

uy=k(y)=N=y3

k(y)=14y4

14x4+14y4=c

 

Problem 3.

sinxcosydx+cosxsinydy=0

 

The equation is extact (My=sinxsiny,Nx=sinxsiny)

Integrate, 

 

u=Mdx+k(y)

u=sinxcosydx+k(y)

u=cosxcosy+k(y)

 

Differentiate with respect to y : 

 

uy=cosxsiny+k(y)=cosxsiny

k(y)=c

cosxcosy=c

반응형