일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- Problem Set 1.4
- Advanced Engineering Mathematics
- homogeneous
- SW역량테스트
- 공수
- Problem set 1.5
- Conversation
- 미방
- English
- Ode
- 공업수학
- 삼성SW역량테스트
- 영어회화
- ODEs
- Python
- 미분방정식
- 공수 문제풀이
- 코딩테스트
- vocabulary
- 공수1
- 비제차 상미분 방정식
- kreyszig
- 백준
- Problem set 2.7
- Homogeneous ODEs
- Nonhomogeneous ODEs
- 대학
- 공학수학
- 문제풀이
- 맛집
- Today
- Total
목록대학 (3)
한걸음
Intro Homogeneous linear ODEs 의 일반적인 식의 형태는 다음과 같다. $$ y'' + p(x) y' + q(x) y = 0 $$ 이 때, $ p(x) = a \ , \ q(x) = b \ , \ (a, b \ is \ constant) $ 일 때를 고려해보자. ※ 원서가 영어라서 그런지, 읽는데 오래걸렸는데 정리하고 보니 별거 없었다. 1. Characteristi equation 계수들이 상수항인경우의 상미분 방정식의 해를 $ y = e^{\lambda x} $ 라고 해보자. 그 다음, 1계 미분, 2계 미분 실시해서 식을 정리해보면 다음과 같은 꼴을 유도할 수 있다. $$ \lambda^{2} + a \lambda + b = 0 $$ 이를 특성방정식이라고 하며, 위의 식의 판별..
Intro 아래와 같은 형태를 가질 때 2nd order ODE 는 선형이라고 한다. $$ y'' + p(x) y ' + q(x) y = r(x) $$ 이 때, $ r(x) = 0 $ 이면 Homogeneous라고 하고, 아닌 경우에는 non-homogeneous 라고 한다. 1. Superposition or linearity principle Homogeneous equation 의 기본 구조는 중첩의 원리 또는 선형성의 원리를 따른다. 따라서, $ y'' + p(x) y' + q(x) y = 0 $ 의 해는 다음과 같은 선형조합(Linear combination)을 따른다. $$ y = c_{1} y_{1} + c_{2} y_{2} $$ Theorem 1. 열린구간 I 에서 "Homogeneous ..
드디어 1.5절! 정리시작해봅시다. Intro. 아래와 같은 형태를 가질 때 First-order ODE는 선형(Linear)이라고 한다. $$ {y}' + p(x)y = r(x) $$ y의 차수가 1차 이기 때문에 해당 식을 선형이라고 부른다. y의 차수가 2차 이상이 되는 경우 비선형(NonLinear)이라고 한다. 이번 절에서는 Linear문제의 해를 구하는 것과, Nonlinear를 Linear로 바꾸어 해를 구하는 것을 공부한다. 1. Linear ODE 1.1 Homogeneous Linear ODE r(x)가 0 인 경우 선형미분방정식은 Homogeneous Linear ODE라고 한다. $$ {y}' + p(x)y = 0 $$ 변수분리법(Sperating Variables)을 활용하여 적분..