일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- Problem Set 1.4
- Conversation
- 공업수학
- 문제풀이
- Ode
- Problem set 2.7
- 영어회화
- Advanced Engineering Mathematics
- SW역량테스트
- Nonhomogeneous ODEs
- 미방
- 삼성SW역량테스트
- 공수 문제풀이
- homogeneous
- vocabulary
- kreyszig
- Python
- ODEs
- English
- 미분방정식
- 백준
- Problem set 1.5
- 공학수학
- 비제차 상미분 방정식
- 스피치 연습
- 공수
- speech
- 코딩테스트
- Homogeneous ODEs
- 공수1
- Today
- Total
한걸음
Advanced Engineering Math. Problem set 2.7 : 7 ~ 9 본문
Advanced Engineering Math. Problem set 2.7 : 7 ~ 9
우당탕탕 할 수 있다!!! 2023. 11. 30. 14:22
Problem 7 ~ 9는 미분 연산자로 표현이 되어있다. 평소대로 읽어서 풀면 된다. 이런 표현은 자주 나오는데, 특히 공기역학 공부시 실체적 도함수(Substantial Derivatives)는 유용하니 익숙해지면 편하다.
Problem 7.
Find the solution
$$ y'' + 2 y' + \frac {3}{4} y = 3 e^{x} + \frac {9}{2} x $$
1) Solution of homogeneous ODE
Let's solve the equation when right hand side is 0
By the characteristic equation, there are real roots, $ \lambda = - \frac {1}{2} or - \frac {3}{2} $
Hence, the solution $ y_{h} $ :
$$ \therefore y_{h} = c_{1} e^{- \frac {1}{2} x} + c_{2} e^{- \frac{3}{2} x} $$
2) Solution of Nonhomogeneous ODE
Let's assume the $ y_{p} $ is the $ C e^{x} + K_{1} x + K_{0} $
It is determined by Basic Rule and Sum Rule of method of undetermined coefficient.
$$ y_{p} = Ce^{x} + K_{1} x + K_{0} $$
$$ y'_{p} = Ce^{x} + K_{1} $$
$$ y''_{p} = Ce^{x} $$
Substitute into equation,
$$ (1 + 2 + \frac{3}{4}) C e^{x} + \frac {3}{4} K_{1} x + 2K_{1} + \frac {3}{4} K_0 = 3e^{x} + \frac {9}{2} x $$
In short,
$$ C = \frac{4}{5} \ , \ K_{1} = 6 \ , \ K_{0} = - 16 $$
Hence, the $ y_{p} $ is,
$$ \therefore y_{p} = \frac {4}{5} e^{x} + 6 x - 16 $$
The General Solution is,
$$ \therefore y(x) = C_{1} e^{- \frac{1}{2} x } + C_{2} e^{- \frac {3}{2} x} + \frac {4}{5} e^{x} + 6 x - 16 $$
Problem 8.
Find the solution
$$ 3 y'' + 27 y = 3 cos x + cos {3x} $$
Divide by 3,
$$ y'' + 9 y = cos x + \frac{1}{3} cos {3x} $$
1) Solution of homogeneous ODE
Let's solve the equation when the RHS is 0
By the characteristic equation, there are two complex roots, $ \lambda = \pm 3 i $
Therefore, the solution $ y_{h} $ :
$$ \therefore y_{h} = C_{1} cos 3x + C_{2} sin 3x $$
2) Solution of Nonhomogeneous ODE
Let's assume the $ y_{p} = A cos x + B sin x + C x cos {3x} + D x sin {3x} $
The terms " $ A cos x + B sin x $ " is determined by Basic Rule,
And another term is defined by Basic Rule and Modification Rule because of correspondence of $ y_{h} $.
Substitute into the equation, and we get,
$$ 8A cos x + 8 B sinx - 6C sin {3x} + 6D cos {3x} = cos x + \frac{1}{3} cos{3x} $$
$$ A = \frac {1}{8} \ , \ B = 0 \ , \ C = 0 \ , \ D = \frac {1}{18} $$
Hence, the $ y_{p} $ is,
$$ \therefore y_{p} = \frac{1}{8} cosx + \frac{1}{18} x sin 3x $$
The General Solution is,
$$ \therefore y(x) = C_{1} cos {3x} + C_{2} sin {3x} + \frac {1}{8} cos x + \frac {1}{18} x sin {3x} $$
Problem 9.
Find the solution
$$ y'' - 16y = 9.6 e^{4x} + 30 e^{x} $$
1) Solution of homogeneous ODE
By the characteristic equation, $ \lambda = \pm 4 $
$$ \therefore y_{h} = c_{1} e^{4x} + c_{2} e^{-4x} $$
2) Solution of Nonhomogeneous ODE
We will use the Sum Rule.
when checking the first term of right hand side, we can apply the modification rule by mulfiplying x,
and second term of RHS will be deteremind Basic Rule.
$$ y_{p} = Axe^{4x} + Be^{x} $$
$$ y'_{p} = Ae^{4x} + 4 A x e^{4x} + B e^{x} $$
$$ y''_{p} = 4A e^{4x} + 4A e^{4x} + 16 Axe^{4x} + Be^{x} $$
Substitute into the equation, we get,
$$ 8A e^{4x} - 15B e^{x} = 9.6 e^{4x} + 30e^{x} $$
$$ A = 1.2 \ , \ B = -2 $$
Hence, the $ y_{p} $ is,
$$ \therefore y_{p} = 1.2 x e^{4x} - 2 e^{x} $$
The General Solution is,
$$ \therefore y(x) = c_{1} e^{4x} + c_{2} e^{-4x} + 1.2 x e^{4x} - 2 e^{x} $$
'Engineering > Archive' 카테고리의 다른 글
Advanced Engineering Math. Problem set 2.7 : 13 ~ 15 (0) | 2023.12.11 |
---|---|
Advanced Engineering Math. Problem set 2.7 : 10 ~ 12 (1) | 2023.12.08 |
Advanced Engineering Math. Problem set 2.7 : 4 ~ 6 (0) | 2023.11.29 |
Advanced Engineering Math. Problem set 2.7 : 1 ~ 3 (2) | 2023.11.28 |
Advanced Engineering Math. Problem set 1.5 : 11 ~ 13 (1) | 2023.11.02 |